
April 2021

Security
Paper
SHAREKEY Swiss AG

All-in-One App

Easy to Use
Single Account
Multi Device
Sync History

All Data Encrypted
Auditable Source Code
256-Bit Crypto Engine
Sharekey Blind to All Data

App-to-App Encryption

Swiss Cloud Storage
Strict Log Policy
EU GDPR Compliant
Swiss Privacy Laws

Swiss Privacy

3 | SHAREKEY Swiss AG Security Paper 50

Contents

Contents 3
Executive Summary 4
Key Differentiators 5
Overview 6
Security Design 9

Identity ..9
Verification ...9
History ...10
Metadata ...10

Security Culture 11
Our People ... 11
Our Planet .. 11

Key Management 12
Principal Keys Overview12
Secret Phrase Generation
(24 Secret Words)12
Key Generation ...12

Master Secret Key12
Master Signing Key 13
Random Key .. 13

Key Derivation ... 13
Session Authorisation Token14

User Account & Device Management 16
Account Creation (Sign Up)16

User Verification16
Secret Phrase Generation 17
Device Setup (Sign In)18
Authentication (Unlock App)19

Connecting Users 20
Discover ..20
Key Sharing ..21
Channel Members21

Messaging 22
Direct Messaging 22
Channel Messaging 23

Storage 25
Data Sharing .. 26

Folder Sharing 26
File Sharing .. 26

Rights Management27
Local File Storage 28

Data Encryption 29
Crypto Layer in App 29

Data Encryption & Integrity 30
XSalsa20 .. 30
Poly1305 ... 30

Digital Signatures 30
Ed25519 .. 30

Crypto Layer Output31
View Encrypted Data31
Signed Encrypted Data31

Transport Layer Security 32
Notifications 33
Infrastructure 34

Data Hosting Infrastructure 34
Kubernetes Cluster...................................35

Load Balancer35
File Uploading Microservice35
Monolith ...35
Database ...35
Backup Tool...35
Persistent Cluster35

User Data Processing 36
Testing & Certification 38

Code Audits .. 38
Penetration Tests 38
Bounty Programs 38
Certifications .. 38

Source Code 39
Website 40
Roadmap 41

Expanded Functionality41
Metadata ...41
Increased Security 42
Sharing Control .. 42
Infrastructure & Data Storage 43

Conclusion 44
References 45
Acronyms 46
Glossary 47

4 | SHAREKEY Swiss AG Security Paper 50

Sharekey is an All-in-One business collaboration app using App-to-App Encryption
with decentralised keys for true privacy. It is expected to be particularly useful
for Corporate Executives, Board Members, Legal and Financial staff to share
confidential information, both within and across enterprise boundaries. Of
course, the solution is also designed to be employed as a general purpose, secure
corporate communication and collaboration tool.

Sharekey offers a privacy-focused alternative to traditional collaboration
environments. Unlike other collaboration systems, where personal and enterprise
data is visible to the service provider, all data stored on the Sharekey platform is
encrypted using keys controlled by the end users and securely retained on their
devices.

This level of privacy is essential at this time of frequent enterprise data breaches
and growing regulatory compliance requirements. Sharekey offers an alternative
for organisations concerned about the security of their enterprise data and the
privacy of corporate communications. It can also be useful to those enterprises
unable to use other solutions due to regulatory compliance concerns. For example,
certain enterprises might be legally required to retain and decrypt historical
messages, which might not be possible on other platforms but is a feature of
Sharekey.

Currently, Sharekey offers support for individual and group communications, and
file and folder storage and sharing. However, the Sharekey Roadmap includes
adding support for voice and video conferencing and productivity-focused tools
such as a calendar and project-based collaboration system. All of these systems
will be built on Sharekey’s end-to-end encrypted platform where users and
enterprises own and have full control over their encryption keys.

The Sharekey platform includes the following key security features:
 All data, including privacy-sensitive metadata, is end-to-end encrypted;
 Users are the only ones with access to their encryption keys;
 Access controls on messages and shared data are cryptographically

enforced;
 Users are identified via their corporate emails (allowing corporate policies

to dictate access);
 User accounts are secure by default (with local files encrypted and

password or passcode required for sign-in to the app);
 Backend servers in Switzerland used by Sharekey hold all relevant industry

certifications (ISO27001, SOC2, PCI DSS, etc.).

The remainder of this document provides a description of the key features of
Sharekey that differentiate it from similar (typically consumer) solutions, as well as
a deep dive into the technical aspects of the security model that are at the heart of
the solution.

Executive Summary

5 | SHAREKEY Swiss AG Security Paper 50

Key Differentiators

Sharekey is a collaboration platform where all data is encrypted, and only
Sharekey users have access to their encryption keys. This makes Sharekey immune
to many of the cybersecurity risks that threaten other collaboration applications,
such as:

 Password Leaks: Sharekey users’ credentials are managed using Secret
Keys that are stored only locally on their devices. If attackers compromise
Sharekey’s servers, there is no password hash database to be leaked.

 Data Leaks: All data stored on Sharekey’s servers are encrypted with a key
that never leaves the user device. An attacker with access to Sharekey’s
servers does not have the ability to access or exfiltrate any readable user
data.

 Social Engineering: Sharekey employees have no access to user data or
accounts because all data is encrypted with user-controlled keys. This
makes social engineering attacks against Sharekey employees ineffective
because they lack the ability to access Sharekey user data. The Sharekey
Roadmap also includes the implementation of further protections against
Man-in-the-Middle (MitM) attacks to eliminate the risk of attacks during
the connection creation step on the server side.

 Court-Ordered Disclosure: Social media and collaboration platforms with
access to a user’s Secret Keys may be compelled by a court order to turn
over user data. Sharekey can’t decrypt user data, making it immune to
such orders. Moreover, SHAREKEY Swiss AG being a Swiss company with
its servers hosted in Switzerland, all user data is protected by the Swiss
Federal Data Protection Act (DPA) and the Swiss Federal Data Protection
Ordinance (DPO). These offer some of the strongest privacy protection in
the world for both individuals and corporations. As Sharekey is outside of
US and EU jurisdiction, only a court order from the Cantonal Court of Zug
or the Swiss Federal Supreme Court can compel us to release the extremely
limited user information we have.

 Metadata: Sharekey additionally minimises the collection of user
metadata, as described in our Privacy Policy and Roadmap. Sharekey also
does not employ any user behavior analysis tool or share any data with
third parties.

 Physical Device Access: All data stored on a user’s device is encrypted,
with the exception of downloaded files opened in another application.
This means that an attacker with physical access can only access data if
they know the user’s Password or Secret Phrase. As no reliable and superior
authentication solutions exist to mitigate such attacks, this is not an attack
scenario that Sharekey can effectively protect against, and attempting
to do so could result in weaker security, as demonstrated by successful
attacks against multiple versions of FaceID and TouchID.

Without encrypting all user data with user-controlled keys, it would be impossible
for Sharekey to guarantee protection against all of these potential attack
vectors. It is this decision to leave full control of their data in the user’s hands that
differentiates Sharekey from other collaboration and social media platforms.

https://sharekey.com/legal/privacy-policy.pdf

6 | SHAREKEY Swiss AG Security Paper 50

Overview

Sharekey is a business-to-business collaboration platform with built-in App-
to-App Encryption support for all data exchanges. App-to-App Encryption, as
depicted pictorially in Figure 1, differs from the other types of encryption usually
described as end-to-end. In many end-to-end scenarios, such as secure email
or other consumer-oriented communication apps, some parts of the exchanged
information, typically the metadata, is sent in the clear and read by intermediaries.
But not so with Sharekey. All data is encrypted end-to-end, with only minimal
metadata visible to Sharekey in order to offer its services — and even that limited
metadata does not compromise user privacy in any way.

Figure 1 • App-to-App Encryption

Users on their Sharekey apps connect to one another by sharing their Public Keys
while securely maintaining their private Master Secret Key. Sharekey gets its
name from the fact that the connection is encrypted with a Shared Key derived
from these Public Keys and private Master Secret Keys, as described later in the
document. All data stored and shared via the Sharekey platform is encrypted end-
to-end. Sharekey users have complete control over their private Master Secret Keys,
meaning that none of their data is readable by Sharekey, but only by those they
choose to share it with.

7 | SHAREKEY Swiss AG Security Paper 50

All Sharekey-supported data stored on a user’s device is encrypted, again with
the user’s Master Secret Key, with the exception of downloaded files opened in
another application. This means that an attacker with physical access to a device
can only access Sharekey-enabled data if they know the user’s Password or Secret
Phrase. These are explained more fully in later sections of this document.
Figure 2 shows a high-level view of the Sharekey platform.

Figure 2 • Sharekey Platform Overview

Sharekey users exchange encrypted messages, files and folders using one-on-one
Direct Messaging or one-to-many Channels.

Sharekey is built around an integrated Crypto Layer as shown at the center
of Figure 2. This Crypto Layer implements standardised data encryption,
authentication, and integrity verification for all Sharekey functions. This makes it
possible for Sharekey to implement a secure and privacy-focused collaboration
platform, including encrypted cloud-based file storage, in a way that is both
secure and easy to use.

A complete history of a user’s communications and stored files and folders is
stored encrypted (with the user’s Master Secret Key) on Sharekey’s servers, hosted
by a Swiss cloud provider. Sharekey only has access to encrypted data and holds
this encrypted data solely for the purpose of restoring a user’s data on a new
device.

This remainder of this Security Paper walks through every aspect of Sharekey’s
security solution and deployment infrastructure and outlines key decisions made
to provide a secure, private environment for business-to-business communications.
The document includes everything from initial account setup and key creation to
the various ways to communicate and use the platform leading to the nuts and
bolts of the technical solution and architecture.

8 | SHAREKEY Swiss AG Security Paper 50

The technical architecture of our solution, as shown in Figure 3, will be described
throughout the rest of the document.

Briefly, it describes our assembly of various open-source cryptographic algorithms
and protocols to achieve our goal of app-to-app encryption. All messages and
data stored and shared via Sharekey are encrypted. Data is encrypted locally and
uploaded to Sharekey servers in their encrypted form.

The Crypto Layer — which is at the heart of our solution — contains our
implementation of what we consider true App-to-App encryption. We believe that
our solution is a true disruption in an area where this level of privacy support is
usually lacking.

Figure 3 • Sharekey Technical Architecture

9 | SHAREKEY Swiss AG Security Paper 50

Several design decisions have guided Sharekey’s security controls and measures.
Sharekey has chosen a security model that provides both end-to-end data
protection as well as user-friendly functionality. These usability features are
motivated by the feedback received from users and the identified needs of
Sharekey’s target users, as well as our analysis of the market.

The key decisions and our rationale are described in this section.

As a business collaboration app, Sharekey has chosen corporate email as the user
identifier as there is no need for anonymous users in a corporate environment.
Moreover, enterprise management has full control of these identities and once an
employee leaves an organisation, they no longer have access to the email linked
to their Sharekey account. Ex-employees cannot log into their Sharekey account,
nor add new devices to the account. This greatly limits the potential for leakage or
inappropriate use of company-owned data stored within the Sharekey app.

Future plans include additional security features such as the ability to have
corporate IT management log out an ex-employee from all their current devices
and wipe out Sharekey-encrypted files stored locally on these devices.

Using corporate identifiers also allows integration with enterprise single sign-on
(SSO) solutions.

We have chosen account verification via email as a privacy feature. SMS-based
verification is insecure for a number of different reasons, including the potential
for interception of SMS messages via Signaling System 7 network vulnerabilities
and the potential for social engineering and SIM-swapping attacks. In the latter
scenarios, an attacker can gain access without physical access to the phone
and potentially without the target’s knowledge. For this reason, all Sharekey
authentication and two-factor authentication requests are transmitted via email.

Also, email traffic is often quicker and more reliable than SMS, supporting a more
rapid initial sign-up for a Sharekey account as well as subsequent sign-in to the
app from various devices. While these emails are not encrypted end-to-end (but
are TLS-encrypted between email servers), they carry lower risk than SMS, which
are more exposed due to shortcomings in telecommunication protocols and over-
the-air, unencrypted communications.

The Sharekey app is signed using an Extended Validation (EV) X.509 code signing
certificate from SSL.com. This offers the highest level of authenticity and integrity
assurance.

Identity

Verification

Security Design

http://SSL.com

10 | SHAREKEY Swiss AG Security Paper 50

Many enterprises, especially those in regulated areas such as legal and financial
services, have the requirement to preserve conversations. Many consumer-facing
solutions that create self-destructing or end-to-end encrypted messages do not
meet such regulatory requirements and are increasing the subject of scrutiny by the
relevant authorities in several countries.

As a business app, Sharekey allows users to access their conversations (pairwise
or group) on different devices, with the guarantee that all devices show the full
conversation history. In particular, a new device should be capable of showing the
previous messages in a given conversation. Furthermore, devices should smoothly
recover conversations after being offline for an extended period of time and
generally minimise the risk of data loss that could arise from a desynchronised
state, a common issue with secure messengers.

The Shared Key used for encrypting Direct Messaging or Channel communication
is not “ratcheted”, which ensures that all devices can decrypt previous messages.
This prevents the protocol from providing perfect forward secrecy or providing the
guarantee that an attacker compromising the application’s keys cannot decrypt
past messages. However, if a machine or device is compromised, an attacker can,
in most cases, directly access the local history of decrypted messages or their
decryption keys.

Sharekey requires only the absolute minimum metadata on its users — just enough
to be able to offer the necessary features. It needs the following metadata to be
able to operate:

 Connections: the initiator of the Direct Messaging or the creator of
a Channel (also called the Owner), the name of the Channel and a
pseudonymised list of Members.

 Files and Folders: the creator of a file and folder (also called the Owner),
the pseudonymised list of Members it is shared with, and the role of each
user (Owner, Administrator, Editor, Viewer).

On the whole, Sharekey receives and processes less metadata than similar
communications apps. The Sharekey Roadmap includes efforts to reduce the
metadata collected by Sharekey by eliminating most of these privacy-sensitive
types of metadata. The plan is to enable Sharekey to reduce its metadata
collection to the minimum required to operate the service.

History

Metadata

11 | SHAREKEY Swiss AG Security Paper 50

Security is at the heart of what Sharekey does, and this is manifest in our workforce
and corporate culture.

Our security culture follows all the best practices from ISO 27001, including the
ones on the recruitment and ongoing security practices during employment.

Before they join our staff, Sharekey verifies an individual’s education and previous
employment, and performs internal and external reference checks. The extent of
these background checks depends on the desired position.

All new employees are required to read and understand Sharekey’s documented
Security Policy. While employed, Sharekey employees undergo frequent security
awareness training and are made aware of the latest cyber threats and how to
prevent such attacks.

Also, we emphasise to our engineers the need for ethical development. These
include the need to ensure that our solution maintains our users’ data privacy and
that we do not monetise their data or metadata.

Also, as a good corporate citizen, Sharekey emphasises that its employees be
practitioners of Green IT, an informal but popular movement that encourages the IT
industry to work towards solutions that reduce our carbon footprint.

To this end, Sharekey has taken several steps to support Green IT:
 Server: Sharekey runs its backend servers on 100% renewable energy.
 Storage & Networking: The key feature of our solution — sharing keys

instead of files — is itself a contribution to the principles of Green IT, as it
reduces both storage and communication bandwidth, thereby reducing the
amount of infrastructure and hence the energy needed to run it.

 Client: Our optimised code on clients ensures that devices, in turn, do
not inadvertently bear any additional burden as a result of server-side
optimisations.

And all this, without compromising the security of our solution.

Our People

Our Planet

Security Culture

https://sharekey.com/legal/privacy-policy.pdf

12 | SHAREKEY Swiss AG Security Paper 50

When a user signs up for a Sharekey account, the initial key management process
starts with the generation of a Secret Phrase. This is used for the first login to the
Sharekey app on a device.

The Secret Phrase is used as input to a key generation process that creates a
Private Key — the Master Secret Key — and its public counterpart. The Public Key
is available as a part of the user’s profile and is exchanged with other users to
establish direct, encrypted communications links.

A second public/private keypair is also generated for purposes of creating and
verifying digital signatures. A signature is generated using the private Master
Signing Key.

The Sharekey app on a device is protected using a Password (on a desktop) or a
Passcode (on mobile devices).

The remainder of this section provides the technical details of how these keys are
derived, used and protected.

A later section will describe how the encryption key — the Shared Key — for a Direct
Message or Channel is generated and used.

The key generation process draws randomness from a system-provided
Cryptographically Secure Pseudorandom Number Generator (CSPRNG). For
desktop and web apps, this is exposed via the window.crypto browser functionality,
while SecRandomBytes and SecureRandom are used for iOS and Android
respectively. This secure source of randomness is used to randomly select twenty-
four words from a built-in dictionary of 1700 words. This produces a Secret Phrase
with a total entropy of 170024 > 2256 bits.

This Secret Phrase is provided to the user as part of the account creation process
and is used to perform initial login to the Sharekey application. The user is strongly
urged to securely store this Secret Phrase, as it is essential for signing in to the
Sharekey app on a new device or restoring an account if the Password or Passcode
used to unlock the Sharekey app is forgotten.

The Sharekey account creation process creates two keypairs and makes these
available to the application during the sign-in process to a new device.

The 256-bit Private Key used for data encryption/decryption — hereafter called the
Master Secret Key — is derived from a randomly selected, twenty-four-word Secret
Phrase using the scrypt key derivation function as described below.

Secret Phrase
Generation
(24 Secret Words)

Master
Secret Key

Key Management

Key Generation

Principal Keys
Overview

13 | SHAREKEY Swiss AG Security Paper 50

This private Master Secret Key is securely stored on the device. The public part
of this key pair is derived using the standard elliptic-curve Diffie-Hellman key
agreement protocol. This Public Key is sent to the Sharekey server and used later
during the connection setup between users.

Another secret — hereafter called the Master Signing Key — will be used
later for digital signature creation and verification. It is generated using the
Cryptographically Secure Pseudorandom Number Generator (CSPRNG).

The Master Signing Key is encrypted with the Master Secret Key and stored on the
Sharekey server. Its use is described in a later sub-section.

Random keys are generated using CSPRNG when needed, as, for instance, when a
Channel needs to be set up for group communication.

scrypt is a password-based key derivation function [1]. It takes the Secret Phrase
mentioned previously and, along with a few other parameters, uses it to generate
the Master Private Key for various algorithms mentioned below. Sharekey uses the
following implementation of scrypt:

 Desktop/Web: https://github.com/ricmoo/scrypt-js
 Mobile: https://github.com/crypho/react-native-scrypt

The image above shows the function definition for the use of scrypt as a key
derivation function. The user’s Secret Phrase will be provided as the Passphrase and
the SHA256 hash of the user’s email is used as the Salt. The desired output length
will depend on the algorithm in which the final key will be used. Sharekey uses 256
bits for both data encryption (XSalsa20) and digital signatures (Ed25519).

A 256-bit key means that there are 2256 — ie 11579208923731619542357098500868
7907853269984665640564039457584007913129639936 — potential Secret Keys.
While the time it would take to brute force a 256-bit key depends on the hardware
used, no modern computer is capable of breaking AES-256 in a reasonable amount
of time. The Tianhe-2 supercomputer — the fastest supercomputer in the world —
would take millions of years to expose by brute force a single AES key [2].

scrypt is designed to be particularly memory intensive. These high memory
requirements combined with Salt (unique for each user) make it difficult for an
attacker to generate rainbow tables, which would expedite the password cracking
process.

Master
Signing Key

Random
Key

Key Derivation

Inputs:
 Passphrase: Bytes String of characters to be hashed
 Salt: Bytes Random salt
 CostFactor (N): Integer CPU/memory cost parameter
 BlockSizeFactor (r): Integer Blocksize parameter
 ParallelizationFactor (p): Integer Parallelization parameter. (1..232-1 * hLen/MFlen)
 DesiredKeyLen: Integer Desired key length in bytes
Output:
 DerivedKey: Bytes Array of bytes, DesiredKeyLen long

https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://github.com/ricmoo/scrypt-js
https://github.com/crypho/react-native-scrypt
https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xsalsa20
https://ed25519.cr.yp.to/

14 | SHAREKEY Swiss AG Security Paper 50

Implementation of scrypt has adjustable CPU and memory settings. Sharekey uses
a CPU cost of 215 and a memory cost of 4 (at least 16 MiB) to balance usability and
security.

As a part of the sign-in process from a new device, a session authorisation token
is generated that serves to ensure that only a legitimate Sharekey user can
communicate with the backend.

The authorisation code is generated on the server using CSPRNG with a length of
43 characters and entropy of 6 bits per character, resulting in 256 bits of entropy.
This authorisation code is valid for 90 days from generation. For many requests
to the server, this token serves as “good enough” confirmation of user access.
However, for security reasons, many requests, including any that involve sending
messages or other high-risk actions, require a digital signature of the sent data
using the user’s Master Signing Key.

Figure 4 shows the interactions that verify that the user has access to the Secret
Phrase and can therefore derive the Master Signing Key with which to create
digital signatures.

Figure 4 • New Device Sign-in Interactions

The first three steps in Figure 4 show the sign-in process from a new device.
Sharekey uses the user’s email to identify the user, and validates that email
by requiring the user to return, via the app and within five minutes, a 6-digit
authorisation code sent to that email address. (The user experience for these steps
is shown later in this document.) This step ensures that the user is able to access
their email from that device.

Session
Authorisation
Token

15 | SHAREKEY Swiss AG Security Paper 50

At this point, the server returns the encrypted Master Signing Key — encrypted with
the Master Secret Key — that was stored by Sharekey during the initial account
setup (as described earlier). The purpose is to verify that the Owner of the device
with that email address has proof of possession of the Secret Phrase which is
essential to the process of creating a digital signature.

The first step on the new device is to derive the Master Secret Key from the Secret
Phrase using scrypt. This then allows the decryption of the Master Signing Key. The
Master Signing Key can now be used to sign the previously-received authorisation
code using the Ed25519 algorithm.

The returned signed authorisation code is then verified by the server using the
public part of the Master Signing Key. A successful verification proves that the user
and device have proof of possession of the Secret Phrase.

After the server verifies the signature of the received authorisation token, it
generates a session authorisation token with 256 bits of entropy using CSPRNG.
This will be used in subsequent communication between the app and the server.

Additionally, all communications occur within TLS tunnels.

16 | SHAREKEY Swiss AG Security Paper 50

The Sharekey account creation process takes place in three steps, as outlined
below:

1. The user verifies their email address.
2. The Sharekey app generates the Secret Phrase that the user can use for

future sign-ins to new devices.
3. Finally, Sharekey uses this Secret Phrase and the scrypt key derivation

algorithm to generate the Master Secret Key. This key is used as the Private
Key of the public/private keypair and is used when securely connecting
with other users and to protect the other keys used for data protection and
authentication throughout the Sharekey ecosystem.

Each stage is described in the subsections below.

The Sharekey application is available from the Sharekey website (sharekey.com)
or in mobile (iOS and Android) App Stores. To circumvent the most common type
of phishing attack, where an attacker creates a similar webpage accessible via a
closely related (but mis-spelt) domain name, Sharekey has registered and controls
more than 430 variants of its domain name.

Figure 5 • User Account Creation (Sign Up)

After downloading and installing the application, users are presented with the
leftmost screen shown in Figure 5.

After selecting Create Account, users are asked to enter an Invitation Code (which
can be requested on the Sharekey website). Users then fill out their name and
email address, which is all that is required to create a Sharekey user account. As an
enterprise communications and collaboration application, Sharekey uses just this
minimum amount of data to uniquely identify users, rather than seek additional
information such as phone numbers and other data commonly collected by
consumer-focused applications.

Account Creation
(Sign Up)

User Verification

User Account & Device Management

http://sharekey.com

17 | SHAREKEY Swiss AG Security Paper 50

Figure 6 • User Account Creation Verification

To verify a user’s email address, Sharekey offers two options, depending on whether
the user is at a mobile device or a desktop.

 For a mobile device, Sharekey sends a confirmation email to the provided
address, as shown on the left-hand side of Figure 6.

 For a desktop, the user enters the six digits received via email, as shown on the
right-hand side of Figure 6.

At this point in the initial account setup process, the Sharekey app generates the Secret
Phrase which is used as input to the Secret Key generation process described earlier in
the document..

Figure 7 • Secret Phrase Generation

As Figure 7 shows, this Secret Phrase is displayed to the user and is used to perform an
initial login to the Sharekey application.

The Secret Phrase is also used to restore an account if the application Password or
Passcode on a device is lost or forgotten. If a user’s Secret Phrase is lost or forgotten
and they are not logged into any devices, there is no way to restore their Sharekey
account.

Given this critical role played by the Secret Phrase, the user is made to save a copy or
print it. As Figure 8 shows, Sharekey requires them to enter three words from the phrase
to verify that they have done so.

Secret Phrase
Generation

18 | SHAREKEY Swiss AG Security Paper 50

Figure 8 • Secret Phrase Check

This completes the initial account setup process.

When setting up a Sharekey account on a new device, a user will be asked to go
through the process illustrated by Figure 9.

Figure 9 • New Device Setup (Sign In)

When signing into a Sharekey account on a new device, a user’s email is validated
by sending a confirmation link valid for five minutes to that address. This ensures
that a Sharekey user is made aware that someone is attempting to add a new
device with access to their account. It also acts as a second authentication factor.

Figure 10 • Secret Phrase Entry

A user’s Secret Phrase is used to derive the Master Secret Key, making it available
to the new device. When setting up a Sharekey app on the new device, the
Secret Phrase can either be entered using the QR code reader, or manually via
the wordlist or by uploading the PDF file containing the Secret Phrase (choosing
the “Select from Device” option), as shown in Figure 10. (Recall from the previous
discussion that the user was required to save the Secret Phrase for precisely this
purpose).

Device Setup
(Sign In)

19 | SHAREKEY Swiss AG Security Paper 50

To sign into a new device, both access to the Secret Phrase (either as a wordlist
or a QR code) and the user’s email account are required (for multi-factor
authentication purposes). The support of additional multi-factor authentication
options currently planned are included in the Sharekey Roadmap.

Figure 11 • Application Passcode or Password Creation

After the user has successfully logged into the Sharekey app, they are invited to
create a Password (on desktop systems) or a Passcode (on mobile devices) as
shown in Figure 11. The Passcode on a mobile is a six-digit numeric code (thus
offering one million combinations), while Passwords on a desktop can support
a minimum of eight alphanumeric characters and symbols allowed by the NIST
recommendations described in SP 800-63B [3].

This Password or Passcode is used to unlock a logged-in user account on the
desktop or mobile, respectively. By using a Password or Passcode instead of the
user’s Secret Phrase, Sharekey makes it easier to unlock the app.

 On a desktop, the Password protects the app from unauthorised access. A
key derived from the Password encrypts the Secret Phrase in the computer
or browser’s RAM and is never stored locally in the device.

 On a mobile, the Secret Phrase is encrypted locally using the native
protection system of the device. These steps prevent the disclosure of the
user’s Secret Phrase if the device is stolen.

For the user to have access to their data (messages, files, etc.), they need access to
the user’s Master Secret Key derived from their Secret Phrase. On the desktop, this
Secret Phrase is stored encrypted with a key derived from the user’s Password. On
mobile devices, it is located in the device-specific secure storage (iOS Key Chain or
Android Key Store). When the user authenticates to the app with their Password or
Passcode, as shown in Figure 12, the app can retrieve this encryption key and use
it to access the local database. Users are allowed ten failed attempts before they
are locked out.

Figure 12 • Authentication (Unlock App)

Authentication
(Unlock App)

20 | SHAREKEY Swiss AG Security Paper 50

Connecting Users

Direct encrypted connections between Sharekey users, using a key agreement
protocol with the users’ cryptographic identities, is a fundamental part of how the
Sharekey system works.

Sharekey’s privacy focus means that even group communications (called Channels)
are set up via encrypted links between the Channel creator (also called the Owner)
and its Members. The methods by which these keys are generated, shared, and
used are detailed in the Messaging section below.

As a result, Sharekey users need a method for sharing their keys and establishing
these communications links. Sharekey users can connect to one another in several
ways:

 Discover: The Sharekey directory enables users to search for other users
with public profiles. (User profiles are created private by default, but users
can choose to make theirs public.)

 Key Sharing: Sharekey users can exchange Public Keys directly using QR
codes or copy/paste these into out-of-band messages (e.g., emails, text,
etc.).

 Channel Members: All Members of a Sharekey Channel can connect
directly to one another.

The data that Sharekey collects and stores to create direct communications or
Channels is outlined in our Privacy Policy [4].

Sharekey offers an integrated directory, called Discover, of Members who have
set their profiles to be publicly visible. Users can also augment their public profile
with their name, user-selected image, location and tagline. By using the Discover
feature, Sharekey users can find and connect easily to other users of Sharekey, as
shown in Figure 13.

Figure 13 • Discovering Members

Only registered Sharekey users have access to the directory of Members. Thus,
profiles can only be shared by and between registered Members.

Discover

https://sharekey.com/legal/privacy-policy.pdf

21 | SHAREKEY Swiss AG Security Paper 50

By default, new users’ profiles are hidden in Discover until they set their profile to
visible under the Settings accessible from the Me page/pane. Using the Discover
pane, Sharekey users can browse other users’ profiles and establish a connection
by sharing their Public Key.

Members that wish to connect without being publicly visible in Discover have a few
options for doing so. Two options exist to share a Public Key (also called “My Key”
in the app) with another Member:

Figure 14 • Key Sharing

 Scanning the QR code from the Me screen on mobile as shown in Figure 14,
or

 Using the Copy option on the My Key screen to access a Base64-encoded
Public Key, which can be shared over another communications app. The
recipient can then connect to the Member by pasting this Public Key in the
Search bar of the Discover pane.

Sharekey supports group conversations within Channels. A Sharekey user can view
the profile of any Members of a Sharekey Channel as shown in Figure 15.

Figure 15 • Channel Information

This enables a Member to establish direct connections with other Channel
Members. This is a third option for Members to connect without being visible in
Discover, but it assumes that the Members are already part of the same Channel.

Key Sharing

Channel
Members

22 | SHAREKEY Swiss AG Security Paper 50

Messaging

All messaging on Sharekey is fully end-to-end encrypted. Upon initial connection,
users exchange Public Keys. As these keys are currently exchanged via Sharekey
servers, the Sharekey Roadmap includes the development of additional protections
against Man-in-the-Middle (MitM) attacks. These keys are then used to establish
Shared Keys that allow encrypted Direct communications or sharing of Channel
encryption keys.

Direct Messaging (also called Direct Message or DM) involves only those two
users, as shown in Figure 16. These users establish a Shared Key using the Diffie-
Hellman key exchange protocol [5]. To aid readers unfamiliar with this standard key
generation protocol, we offer a brief explanation of the steps by which two users
derive a Shared Key which encrypts their subsequent communication.

Figure 16 • Direct Messaging

As shown in the bottom of Figure 17, the Sharekey application assigns to Alice and
Bob a long-term identity in the form of a cryptographic key pair (the Public Key
and Master Secret Key), generated securely on their devices using their respective
Secret Phrases. This process, which includes email-based identity verification, has
been described in a previous section.

Alice and Bob exchange (or find via their Sharekey profiles) their Public Keys. If Alice
does not have access to Bob’s Public Key (perhaps because Bob did not make it
available via his public profile), he can receive Alice’s Public Key when she initiates
the request for creating a Direct Message (called “Connection Request” in the
Sharekey app). He returns his Public Key if he wishes to complete the connection
(called “Accept” in the app).

Then, as shown in the middle of Figure 17, Alice takes Bob’s Public Key and her
Master Secret Key to create a Shared Key (“B2FD...A6F5” as an example in the
figure). Similarly, Bob uses his Master Secret Key and Alice’s Public Key to create
the same Shared Key. That is the magic of this Diffie-Hellman based Shared Key
generation algorithm!

All subsequent communication between the two users is now encrypted with this
Shared Key. This means that, although messages pass through Sharekey’s servers
en route to their destination, Sharekey has no visibility into these messages.

Direct
Messaging

23 | SHAREKEY Swiss AG Security Paper 50

Figure 17 • Shared Key for Direct Messaging

Channel messaging (also called Channels) is designed for group communications,
as shown in Figure 18, and is built up as a series of one-to-one Direct Messages.

Figure 18 • Channel Messaging

As illustrated in Figure 19, the Channel creator (also called the Owner), Charlie in
our example, generates a 256-bit random key which will become the Shared Key
(“C4E6...B6D4” as an example in the figure) for the Channel. This Shared Key is
generated using the Cryptographically Secure Pseudorandom Number Generator
(CSPRNG).

When a new Member, Bob, is invited to the Channel, the person sending the invite
(Charlie in our example) uses his Direct Messaging connection with Bob to send
him the Shared Key for the Channel. Charlie will also use his Direct connection
to send to Alice the same Shared Key for the Channel when he invites her to join
(called “Add Members” in the Sharekey app).

Channel
Messaging

24 | SHAREKEY Swiss AG Security Paper 50

Note:
 In the case of a Direct Message, the Shared Key is derived in the app from

a combination of one user’s Public Key and the other user’s Master Secret
Key, using the magic of the Diffie-Hellman key exchange protocol.

 In the case of a Channel, the Shared Key is generated randomly and then
distributed individually to invite Members to join the Channel.

A new Channel Member’s Public Key is made available to other Members of the
Channel.

The new Channel Member can then download and decrypt past and future
messages within the Channel. Optionally, the Channel Member who invites the
new Member to the Channel can prevent the new Member from accessing previous
messages in the Channel by generating a new Shared Key and only sharing this
latest encryption key with the new Member as well as the other Members.

Figure 19 • Shared Key for Channel Messaging

If a Member is removed from a Channel, the Channel Member who removes the
Member generates a new Shared Key and distribute it to all others Members via
the same mechanism as for the Channel creation (i.e., via Direct Messaging). All
future messages are encrypted only with this new Shared Key, making it impossible
for the removed Member to view them.

Additionally, the revoked Shared Key is retained by the Channel and used by the
remaining Members to access earlier messages that were encrypted with the now-
deprecated Shared Key for the Channel.

25 | SHAREKEY Swiss AG Security Paper 50

Storage

Sharekey mediates data sharing between users by providing storage on its servers
in the cloud. A user’s storage on the server is called a SAFE. A SAFE supports
storage of both files and folders.

Figure 20 • SAFE Storage

Sharekey allows users to store their data fully encrypted on its servers in the cloud.
A user’s storage is composed of:

 a SAFE, for files and folders, as shown on Figure 20;
 all messages and attachments shared via Direct Messages and Channels

and visible only there.

Sharekey users share the data in their SAFE with other Sharekey users via
messaging.

Each file stored in a user’s SAFE is encrypted with a unique encryption key
generated by the Owner of the file. This encryption key is then encrypted with the
user’s Master Secret Key.

Both the encrypted file and the encrypted key are uploaded to Sharekey’s cloud
storage. This makes it possible for users to access their data on any device.
Moreover, because the user’s Master Secret Key is required for decryption,
Sharekey has no visibility into a user’s saved files.

Figure 21 shows the types of information stored and shared for each type of
content. All content types include an encrypted name and modification date.
Folders provide additional information about their contents (including number of
items inside and each of their encryption keys). File metadata contains information
about the size of the file and the type of content– e.g., document (pdf, doc, etc.), or
image (e.g., png, mpeg, etc.).

The Sharekey Roadmap includes adding support for an encrypted local database
where all downloaded and opened files/folders can be stored.

26 | SHAREKEY Swiss AG Security Paper 50

Figure 21 • SAFE Structure

Sharekey allows users to send the data saved in their SAFE via messaging. Both file
and folder sharing are possible.

Figure 22 • Data Sharing

Files stored within a user’s SAFE can be shared with other users, as shown in Figure
22. Sharing can occur either via Direct Messages or Channels.

If a user wishes to share a file via Direct Messaging or a Channel, the decryption
key is shared with that message. This allows the recipients to download and
decrypt the file. Moreover, because Direct Messages and Channels are encrypted,
no one else can access and decrypt the file.

Sharekey users are also able to share folders via Direct Messages or Channels.
Each folder has its own unique encryption key, similar to files. Each folder includes
the list of the files and folders that it contains along with their encryption keys.
This enables decryption of the contents of the files and folders within this folder.
As every embedded folder contain the decryption keys of its contents, the entire
directory tree can be recursively decrypted.

Data
Sharing

File Sharing

Folder Sharing

27 | SHAREKEY Swiss AG Security Paper 50

The Owner of files and folders has the ability to manage other users’ rights to
these assets. At a high level, file and folder Owners can grant or revoke access to
them. These rights are stored as a collection of database records, and the Owner
of a record (or a user who is granted access to this record) can revoke the rights for
a specific user by deleting the specific record.

Sharekey also supports more granular rights management for files and folders.
The Owner of a file or folder can assign to other users the role of a Viewer, Editor,
or Administrator, providing read-only, read and write, or full access and sharing
control respectively.

Figure 23 • Rights per Role for Files & Folders

Figure 23 shows the various permissions that each role has regarding a file or
folder. By default, a user will be granted Editor permissions when a file or folder is
shared with them.

Rights
Management

28 | SHAREKEY Swiss AG Security Paper 50

However, the person sharing the file or folder can also define a custom set of
permissions, allowing more granular permissions control. For example, it may be
desirable to allow a user read/write access to a file but not allow them to reshare
the files with others and to download them.

The rights that are granted for a particular file or folder are based upon a number
of factors, including:

 Item: The shared file or folder;
 Sharer: The user who gives rights for the shared file/folder to the “Given to”

(see below) party;
 Owner: The initial Owner of the file or folder;
 Given to: The user to whom rights to this file or folder is given.

These identities and permissions are used in the rights management process to
ensure that a new user’s access to a file or folder are appropriately limited. For
example, the user sharing the file or folder cannot grant rights that they do not
have themselves.

When a file is shared via Sharekey and opened by the user, it is stored locally on
the receiving device.

Files shared via Sharekey are decrypted and stored on a user’s device, making it
possible to open them using the appropriate application.

Sharekey supports opening images natively within the app (though support of
additional file formats are in the Roadmap). All other file types must be stored
after being decrypted at a location where an appropriate application (Adobe
Reader, Microsoft Office, etc.) can access them for display to the user. For this
reason, the use of a full-disk encryption solution like Windows BitLocker or macOS
FileVault is highly recommended.

On both desktop and mobile devices, cached files are automatically deleted a
week after last access. On a mobile device, cached files are automatically stored in
the local Realm database of the app and are deleted when the app is deleted.

Local File
Storage

29 | SHAREKEY Swiss AG Security Paper 50

Data Encryption

The Crypto Layer — shown in Figure 3 earlier in the document and reproduced
partially below in Figure 24 — is at the heart of the Sharekey system and contains
our assembly of various open-source cryptographic algorithms and protocols to
achieve our goal of app-to-app encryption.

All messages and data stored and shared via Sharekey are encrypted. Data
is encrypted locally and uploaded to Sharekey servers in their encrypted form.
Sharekey currently uses a combination of symmetric, asymmetric, and transport-
layer encryption for security. Moreover, additional cryptographic support is
currently on the Roadmap.

Sharekey uses public-key-based authentication encryption, namely the crypto_box

implementation of NaCl [6]. While tweetnacl-js is currently used in JavaScript
environments [7], the intent is to move to libsodium for all platforms. Both
implementations use the following algorithms:

 Data Encryption: XSalsa20
 Authentication: Poly1305
 Digital Signatures: Ed25519

The flow of data through the system is shown in Figure 24.

Figure 24 • Crypto Layer in App

As shown in Figure 24, signed encrypted data is first verified against the
associated signature (Ed25519). Then, the data undergoes integrity checking using
the authenticated encryption algorithm (Poly1305) and then decrypted with a 256-
bit key (XSalsa20).

Crypto Layer
in App

https://github.com/dchest/tweetnacl-js
https://libsodium.gitbook.io/doc/

30 | SHAREKEY Swiss AG Security Paper 50

For data encryption, these steps are performed in reverse.

The selection of the crypto_box function and its associated algorithms is intended
to optimise the usability and security of the Sharekey system.

Sharekey uses the XSalsa20-Poly1305 Authenticated Encryption and Associated
Data (AEAD) Algorithm. This simultaneously performs data encryption/decryption
and generates/verifies a MAC for data integrity validation. Under the hood,
XSalsa20-Poly1305 is built from the XSalsa20 and Poly1305 open-source algorithms.

The XSalsa20 stream cipher is based upon the Salsa20 algorithm but uses a longer
nonce (192 bits vs. 64 bits). The use of a longer nonce makes it possible to use a
weaker pseudorandom number generator (PRNG) with the same key without the
risk of reusing the same key and nonce for multiple messages.

XSalsa20 uses a 256-bit Secret Key plus the first 128 bits of the nonce to generate
a unique round key for each of XSalsa20’s twenty rounds of encryption. This use
of a 256-bit key makes XSalsa20 better or at least equivalent in security to AES
and other encryption algorithms used for protection of classified or sensitive
information. Currently, no known attack is capable of breaking the full 20-round
version of XSalsa20.

Poly1305 uses an encryption algorithm (Xsalsa20 in NaCl), an additional key, and
a random nonce to generate a MAC. Generating a MAC based upon a received
message and comparing it to the one included with the message enables the
recipient to detect if the message has been modified or corrupted in transit.

The security of Poly1305 is largely dependent upon the underlying encryption
algorithm used. Because Xsalsa20 is a strong encryption algorithm, NaCl’s
implementation of Poly1305 is strong as well.

For digital signatures, Sharekey uses NaCl’s implementation of Ed25519 (edDSA
with Curve25519).

The use of Ed25519 provides a number of different advantages:
 Fast Computations: Ed25519 offers fast signature creation and

verification.
 Low Power Consumption: Elliptic curve algorithms have lower power

consumption compared to RSA signatures or DSA/Schnorr with
multiplicative groups.

 Low Data Usage: Ed25519 signatures are only 512 bits, and encryption
keys are only 256 bits.

 High Security: Ed25519 has a 2128 security target.
 Side-Channel Resistance: Ed25519 allows for efficient implementations

without data-dependent branching or other variable-time operation that
would make it vulnerable to timing attacks.

Data Encryption
& Integrity

XSalsa20

Poly1305

Digital Signatures

Ed25519

31 | SHAREKEY Swiss AG Security Paper 50

Crypto Layer
Output

This section shows the output / outcome of the encryption done by the Crypto
Layer.

On a Web Application, a user can view this signed encrypted data by following
these steps:

 Go to app.sharekey.com and sign-in
 Open Development Tool on your Browser by pressing F12
 Go to the Network tab and select WS
 Refresh the page by pressing cmd + R or CTRL + R
 Select “websocket” on the left under Name and select the “Messages”

tab, as illustrated in the Figure 25.

Figure 25 • How to view Encrypted Data of the Crypto Layer

Figure 26 shows an example of the signed and encrypted data in a Direct Message
before it is further encrypted by TLS on its way to the server.

Figure 26 • An example Output of the Crypto Layer

View
Encrypted Data

Signed
Encrypted Data

http://app.sharekey.com

32 | SHAREKEY Swiss AG Security Paper 50

In addition to encrypting each message with a Shared Key, Sharekey also uses
Transport Layer Security (TLS) through the use of TLS v1.2 and 1.3.

Figure 27 • Qualys SSL Labs Report

According to SSL Lab’s Qualys’ benchmarking, a screenshot of which is shown in
Figure 27, Sharekey’s web server configuration (for server to app communications)
meets the requirements necessary to achieve an A+ grade.

The use of TLS provides a number of security benefits, including:
 Preventing traffic analysis;
 Hiding Sharekey metadata;
 Protection against Man-in-the-Middle attacks;
 Preserving conversation integrity.

Transport
Layer
Security

https://www.ssllabs.com/ssltest/analyze.html?d=app.sharekey.com&latest

33 | SHAREKEY Swiss AG Security Paper 50

Notifications

Sharekey’s mobile and desktop apps have the ability to notify a user about new
content. Users have the ability to configure the app to show notifications for all
messages or only those for specific Direct Messages or Channels. Users can choose
how much information to reveal with the notification, such as the name or simply
that some form of shared content (message, file, folder, etc.) is waiting for them.
This is shown in Figure 28, for a mobile screen on the left and a desktop at the
right.

Notifications do not reveal any sensitive information about the message, including
contents, Channel names, etc. In fact, Sharekey doesn’t provide any information
about why the notification is appearing because the data needed to do so is
encrypted until the user opens the app. After the application is opened and the
user authenticates, the actual message is presented to the user.

Figure 28 • Encrypted Notifications

34 | SHAREKEY Swiss AG Security Paper 50

Infrastructure

Sharekey supports caching recent messages and stored data on the device.
Moreover, a complete history of a user’s communications and stored files and
folders is also stored encrypted on Sharekey’s servers. This section provides an
overview of Sharekey’s server-side infrastructure.

Figure 29 • Sharekey Infrastructure

Figure 29 provides a high-level view of Sharekey’s server-side infrastructure. Some
key elements of this infrastructure are described below.

Sharekey has partnered with two Swiss service providers for its data hosting
infrastructure:

 Equinix: Sharekey’s primary datacenter is provided by Equinix [8]. Equinix
provides high-performance data storage and uses 100% renewable
energy. Equinix holds a number of different certifications, including
ISO27001, PCI DSS, SOC-1 Type II, and others, enabling it to meet all of its
customers’ regulatory compliance requirements.

Data Hosting
Infrastructure

35 | SHAREKEY Swiss AG Security Paper 50

 Exoscale: Exoscale is Sharekey’s hosting provider [9]. It operates multiple
Swiss data centers and holds a number of certifications, such as ISO 27001,
SOC-1 and SOC-2 Type II, PCI-DSS, and more. Its operations run completely
on renewable energy and it provides full redundancy of hosted content to
ensure business continuity.

To enable high availability and easy transitions between data centers, Sharekey’s
backend infrastructure is implemented as a Kubernetes Cluster spread over
multiple different physical instances. Additionally, the Sharekey infrastructure
is described as code using Terraform and uses Helm to deploy software on the
Kubernetes Cluster. This makes it infrastructure-agnostic and allows it to be rapidly
deployed in a new environment if required.

The key elements of a Sharekey Kubernetes Cluster are described below.

Sharekey operates multiple services instances. The Load Balancer service routes
ingress requests from a client using a round-robin algorithm to any available
target service instance that is ready to accept requests.

The file-uploader is a microservice which receive uploading requests, checks the
integrity of the data uploaded by verifying its signature, before uploading onto
Exoscale Simple Object Storage (SOS), a S3-compatible object storage provided by
Exoscale. Sharekey securely stores all encrypted files and users’ profile photo (also
called avatars) on Exoscale SOS. Sharekey checks the integrity of the data received
from clients to avoid MitM attacks.

This contains backend code for the “full stack” app, written using the Meteor.js
framework. The monolith is packed into a container image and runs on a cluster to
obtain scalability and redundancy.

A MongoDB is used for user data storage. It provides enhanced performance
for our use case and, combined with ability to quickly evolve application logic,
this is one of most important parts of our app. Thanks to ability to achieve quick
horizontal scaling and ACID transactions, we able to meet both data safety and
high performance even during the busiest hours of app usage.

This is a critical service, as Sharekey cares deeply about maintaining its customers’
data. To this end, Sharekey has created some self-maintained code for its backup
solution, which runs as Kubernetes jobs, several times per day.

Sharekey retains database backups for two weeks, after which the database
backups are stored externally on Exoscale SOS and therefore delegates backup
storage maintenance to Exoscale.

To provide fault-tolerant data storage, Sharekey operates an open-source network
storage platform — Ceph. Ceph replicates data and makes it fault-tolerant, using
commodity hardware and requiring no specific hardware support. As a result
of its design, the system is both self-healing and self-managing, minimising
administration and other operational expenses.

Kubernetes
Cluster

Load Balancer

File Uploading
Microservice

Monolith

Database

Backup Tool

Persistent Cluster

https://www.exoscale.com/object-storage/
https://ceph.io/

36 | SHAREKEY Swiss AG Security Paper 50

Sharekey’s back-end infrastructure is primarily implemented using Meteor.js. Data
storage is provided by MongoDB with a RedisDB instance used to cache Public
Keys requested within the last half hour.

Figure 30 • Data Processing Architecture

Sharekey uses a WebSocket protocol for communications, enabling a single session
to be maintained between the server and the app as long as the user remains
online.

Figure 30 illustrates the standard flow of a request from a Sharekey client
application to the server:

1. Load Balancer: Sharekey operates multiple different validation nodes
within its data center. The Load Balancer identifies and forwards a request
to the validation node with the highest available capacity.

2. Validation Node: The validation node is responsible for validating three
components of a request:

a. Token: Tokens generated using CSPRNG on the server are validated
when a Sharekey app makes a connection to the server. This token
is required for an app to resume a connection to the server. Tokens
have a length of 43 characters and entropy of 6 bits per character,
resulting in 256 bits of entropy which translates to a high level of
session security for our users.

User Data
Processing

37 | SHAREKEY Swiss AG Security Paper 50

b. Request: At this stage, the server verifies that the message is well-
formed and matches the protocol definition.

c. Signature: The validation node requests the sender’s Public Key
from the RedisDB cache, which forwards the request to MongoDB
if necessary. This key is then used to validate the digital signature
associated with the request.

3. Data Retrieval: A valid request is transmitted via the data bus to a
computation cluster node. This node performs a request from MongoDB for
any of the following types of data:

a. User Private Data and Files: A user’s data is stored encrypted
within Sharekey’s servers. It can be downloaded upon request and
decrypted by the client application when used.

b. User Public Keys: Sharekey’s back-end infrastructure is primarily
implemented using Meteor.js. Data storage is provided by MongoDB
with a RedisDB instance used to cache Public Keys requested within
the last half hour.

c. People: Sharekey does not monitor the traffic on connections
between users but stores the information on connections between
users in its encrypted database. This enables a client app to
download and decrypt a user’s list of private contacts after sign-in.

d. Enclave: Enclave stores a copy of a user’s Public Key and encrypted
Master Secret Key. This can be used to set up or restore a Sharekey
application on a device.

4. Response: After a request has been made, the result of the request or any
additional information generated flows back through the stack and to the
client.

It is important to note that the only information stored unencrypted on Sharekey’s
servers are those provided by users as a part of their public profile and are the
following:

1. A list of users’ full names, profile photos (also called avatars), and Public
Keys, the last named being essential when creating new connections
between users.

2. Users’ email addresses to send 2FA codes and notify them about
attempted logins to their account.

All other data is stored encrypted and can only be decrypted by a client
application once a user has authenticated to it.

At no point in time does Sharekey have access to a user’s data or Secret Keys.

38 | SHAREKEY Swiss AG Security Paper 50

Testing & Certification

Sharekey’s code has been audited several times by a noted French security expert.
Additional audits are planned as new features are added to the code base.

Audit reports can be provided upon request.

Sharekey was subject to several penetration (pen) tests based on the OWASP
Framework. Additional frameworks will be added in the future.

The reports of these pen tests can be provided upon request.

Sharekey plans to introduce a bounty program that will encourage white hat
hackers and other security experts to conduct penetration and other tests to verify
the security of our solution.

In 2021, Sharekey will seek the first level of security certification (called CSPN) from
the French National Cybersecurity Agency, ANSSI [13].

In the near future, it will also pursue ISO 27001 certification.

Code Audits

Penetration
Tests

Bounty
Programs

Certifications

https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-procedures-formulaires-et-methodologies/
https://www.ssi.gouv.fr/
https://www.iso.org/isoiec-27001-information-security.html

39 | SHAREKEY Swiss AG Security Paper 50

Source Code

Sharekey is committed to transparency and providing its customers with control
over their data. For this reason, Sharekey will license its code as open-source in
future.

Currently, some of Sharekey’s code is available on its public GitHub repository
at https://github.com/sharekey. Over time, an increasing amount of code will be
available for review at that location as features currently under development
approach their final state.

Sharekey’s algorithms and protocols for various cryptographic functions are all
open source, and its own code is limited to the assembling and reuse of such
publicly available material.

Sharekey welcomes an audit of the available code by security experts to verify that
it indeed fulfils what is asserted — especially its key feature that the Master Secret
Phrase used for all encryption never leaves a device and remains fully under a
user’s control.

https://github.com/sharekey

40 | SHAREKEY Swiss AG Security Paper 50

Website

Sharekey’s website (sharekey.com) is designed to provide information about the
Sharekey application and download links for the desktop and mobile versions. It
is not connected to Sharekey’s backend servers and is based upon a serverless
architecture inspired by JAMstack. This serverless architecture means that there is
no backend infrastructure to maintain or attack via this site.

The advantage of using JAMstack over legacy three-tier web architectures is
to avoid the processing overhead of running server-side code and creating
dynamically-generated pages for every request. As Figure 31 shows, JAMstack
relies on pre-built, static pages which are cached in edge CDNs for quicker
responsiveness. Moreover, static pages are read-only and have no executable
code to exploit. Also, the server-side infrastructure does not rely on APIs to external
sources (e.g., a Content Management System), further reducing the attack surface.

Figure 31 • JAMstack Architecture vs. Legacy Web Architecture

The Sharekey web application (app.sharekey.com) is accessible from the main
landing page. To be clear, though, this web application is not buit using JAMStack.
The Sharekey web app and desktop application have identical code (the desktop
app is implemented using Electron) and both store encryption keys and user data
in the same secure way.

http://sharekey.com
https://jamstack.org/
http://app.sharekey.com

41 | SHAREKEY Swiss AG Security Paper 50

Roadmap

Sharekey is a new and evolving technology. The Sharekey development
roadmap includes expanded functionality, reduced metadata collection, security
improvements, more granular control of shared data, and support for on-premises
data storage.

Currently, Sharekey offers direct and group messaging and data storage
functionality. The Sharekey roadmap includes integrating a number of new
features into its secure application:

 Call: The call feature will also provide support for end-to-end encrypted
voice calls.

 Video: The video feature will add encrypted video conferencing
functionality.

 Calendar: The calendar feature will provide a secure and integrated
solution for schedule management.

 Workspace: The workspace feature will allow users to organise contacts,
conversations, and shared data based upon projects and teams.

In addition to these new features, Sharekey also plans to add additional
functionality to enhance usability and security for its users, such as:

 Sync with Local Drive: The development of a secure storage solution for
desktops that enables files and folders on the device to be automatically
synced with Sharekey and be searchable on the computer.

 Desktop Offline Mode: Currently, files and folders stored locally on
desktop devices are not encrypted. Sharekey plans to add a local
encrypted database to provide the same level of security on desktops as is
available on mobile devices, especially for offline access.

 Single Sign-On (SSO): Sharekey plans to provide an Active Directory
integration to support Single Sign-On (SSO), integrating it with an
organisation’s existing password management system.

Currently, Sharekey has access to some user metadata needed to provide its
services. This includes:

 Connections: Within a Channel, Sharekey currently receives metadata
regarding the creator of the Channel (called the Owner), the name of the
Channel and a pseudonymised list of Members.

 Files and Folders: Sharekey processes some metadata, including the
creator of a file or folder (called the Owner), the pseudonymised list of
Members, and the role of each Member.

On the whole, Sharekey receives and processes less metadata than similar
communications apps. The roadmap includes efforts to reduce the metadata
collected by Sharekey by eliminating most of these privacy-sensitive types of
metadata. The plan is to enable Sharekey to reduce its metadata collection to the
minimum required to operate the service.

Expanded
Functionality

Metadata

42 | SHAREKEY Swiss AG Security Paper 50

Security and user data privacy are at the core of the Sharekey ecosystem. Sharekey
plans to introduce a number of new security features:

 Certificate Pinning: Sharekey plans to implement certificate pinning for its
applications [12]. This helps to protect against Man-in-the-Middle (MitM)
attacks by forcing the client to verify that the certificate presented by the
Sharekey server matches a copy stored locally on the client.

 Out-of-Band Identity Verification: Sharekey plans to implement a double-
factor connection system where a user can exchange another verifier (such
as a one-time passcode) out-of-band to verify that an exchanged Public
Key actually belongs to the other user. This protects the user against Man-
in-the-Middle (MitM) attacks if the Sharekey infrastructure is compromised.

 2-Factor Authentication (2FA): Attempted sign-in to a Sharekey account
from a new device will require authorisation from one of the user’s other
devices.

 Hardware-Based Key Storage: Sharekey plans to integrate the use
of hardware-based two-factor authentication (2FA) solutions, such as
Yubikey. This will enable the Master Secret Key to be stored off the device,
increasing the difficulty for an attacker attempting to gain access to a
user’s data.

 Post-Quantum Cryptography: Sharekey plans to introduce support for
post-quantum cryptographic algorithms. These algorithms are designed
to be resistant to quantum computing, providing long-term privacy and
security protections for user data.

 Formal Verification: Sharekey plans to use a formal verification tool (such
as Verifpal) to verify the correctness of its protocols. This will help provide
security assurance in terms of confidentiality and integrity.

Currently, as described earlier, Sharekey users can provide other users with full
access to shared files or folders and remove this access if desired. In the future,
users will have more granular control and be able to manage the exact rights and
permissions a specific user should have on a specific shared file or folder.

Additionally, Sharekey users will have a number of different control settings that
they can configure for messages and shared content, including:

Timers
 Self-Destruct: Set a message to delete itself a fixed amount of time after

opening.
 Expiry: Set a message to delete itself on a certain date.
 Schedule: Set a message to only be sent after a certain date.

Rights Management
 No Reshare: Disable the recipient’s ability to share the message or content

with others.
 No Copy: Disable copy/paste for the message.
 No Download: Disable downloading of the shared content.
 No Print: Disable printing of the shared content.
 No Screenshot: Disallow screenshots of the message or shared content.

Sharing
Control

Increased
Security

https://www.yubico.com/
https://verifpal.com/

43 | SHAREKEY Swiss AG Security Paper 50

Access
 Face/Touch ID: Require the use of Face/Touch ID for authentication before

viewing a message or shared content.
 Password: Require the entry of a password to access the content.

Currently, a Sharekey user’s messages and files are stored encrypted on Sharekey’s
back-end infrastructure. In the future, Sharekey will offer the option for enterprises
to deploy their own on-premise infrastructure for employees to store corporate
data.

Additionally, Sharekey plans to provide access to a redundant data center through
a partnership with Mount 10 [10]. Mount 10 operates a datacenter located 1000
meters inside of a Swiss mountain. The planned redundant datacenter will use
Snowberg’s hosting services [11].

Infrastructure
& Data Storage

44 | SHAREKEY Swiss AG Security Paper 50

Conclusion

It is worth reiterating what makes Sharekey different from other communication
platforms.

Sharekey was designed for business-to-business communications, specifically to
guarantee confidential communication and data sharing both within and across
organisations. With the digital transformation of corporate environments and the
rise of remote working as the “New Normal”, the attack surface for cyber threats
has increased dramatically. Thus, a business needs to be able to fully trust the
collaboration tools and platforms that it uses.

And this is particularly critical for communication at the highest levels of
enterprises, such as between CxOs and their staff, both within and across
enterprise boundaries. Just imagine the serious consequences of a leak
surrounding a planned merger, a yet-to-be-released financial report, plans for a
key hire, or a contract under negotiation. That’s why we have created Sharekey, a
Swiss communication and collaboration app with the highest level of security and
privacy built for Business Executives. At the same time, the solution is also useful
within an entire enterprise as a secure collaboration tool.

Sharekey is built on a foundation of strong encryption. Sharekey goes beyond end-
to-end encryption of the communication channel — the full app containing all your
data is heavily encrypted with your own key. This is called “App-to-App Encryption”
— and it’s the future of data security. When you send a document using Sharekey,
only your business counterparts can decrypt it within their Sharekey app. Nobody
else can access your messages, files and folders nor track your interactions — not
even Sharekey employees — because the encryption key never leaves your device
and encrypts everything, including privacy-sensitive metadata.

Sharekey has created a platform where users can be confident of the privacy of
their communication, and one that is immune to many of the cybersecurity and
privacy threats that plague other collaboration platforms.

45 | SHAREKEY Swiss AG Security Paper 50

References

The scrypt Password-Based Key Derivation Function
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-05

How strong is 256-bit Encryption?
https://www.thesslstore.com/blog/what-is-256-bit-encryption/

NIST Special Publication 800-63B • Digital Identity Guidelines
https://pages.nist.gov/800-63-3/sp800-63b.html

Sharekey Privacy Policy
https://sharekey.com/legal/privacy-policy.pdf

Diffie-Hellman Key Agreement Method
https://tools.ietf.org/html/rfc2631

Public-key authenticated encryption: crypto_box
https://nacl.cr.yp.to/box.html

tweetnacl-js
https://github.com/dchest/tweetnacl-js

Equinix ZH5 (Zurich)
https://www.equinix.ch/locations/europe-colocation/switzerland-colocation/
zurich-data-centers/zh5/

Exoscale • Akenes SA
https://www.exoscale.com/

Mount 10 AG
https://www.mount10.ch/en/home/

Snowberg Solutions AG
https://snowberg.ch/

Owasp • Certificate and Public Key Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_
Pinning

ANSSI • Certification CSPN
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-05
https://www.thesslstore.com/blog/what-is-256-bit-encryption/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://sharekey.com/legal/privacy-policy.pdf
https://tools.ietf.org/html/rfc2631
https://nacl.cr.yp.to/box.html
https://www.equinix.ch/locations/europe-colocation/switzerland-colocation/zurich-data-centers/zh5/
https://www.equinix.ch/locations/europe-colocation/switzerland-colocation/zurich-data-centers/zh5/
https://www.exoscale.com/
https://www.mount10.ch/en/home/
https://snowberg.ch/
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/

46 | SHAREKEY Swiss AG Security Paper 50

Acronyms

Data Security Standard

Extended Validation

Message Authentication Code

Man in the Middle

Open Web Application Security Project

Payment Card Industry

Secure Sockets Layer

Security Operation Center

Single Sign-On

Transport Layer Security

Two Factor Authentication

DSS

EV

MAC

MitM

OWASP

PCI

SSL

SOC

SSO

TLS

2FA

47 | SHAREKEY Swiss AG Security Paper 50

Glossary

Two-Factor Authentication (2FA) is a technique by which a computer user is
granted access to a resource only after successfully presenting two pieces of
evidence (or factors) to the authentication mechanism: knowledge (something
only the user knows, such as a password) and possession (something only the
user has, such as a readout from a physical token).

Certificate Pinning forces a client app to validate a server’s X.509 certificate
(containing, among other things, its Public Key) received during connection
setup against a known copy stored on the client.

A one-to-many communication channel created by a Sharekey Member (called
Owner) for encrypted group communication.

A Cryptographically Secure Pseudorandom Number Generator (CSPRNG) is a
pseudorandom number generator (PRNG) with properties that make it suitable
for use in cryptography.

A method for securely deriving a common cryptographic key to encrypt a
communication channel.

An encrypted one-to-one communication channel created between two
Sharekey Members.

Ed25519 is a public-key signature system carefully engineered at several
levels of design and implementation to achieve very high speeds without
compromising security.

An Extended Validation (EV) PKI certificate provides the strongest level of
identity assurance, and issued only after extensive vetting of an organisation’s
credentials.

The Sodium crypto library (libsodium) is a modern, easy-to-use software library
for encryption, decryption, signatures, password hashing and more.

A Message Authentication Code (MAC) is a small piece of data appended to a
message to prove its authenticity, i.e., that the message comes from a trusted
source, and has not been altered in transit.

In cryptography and computer security, a Man-in-the-Middle (MitM) attack
is a cyberattack where the attacker secretly eavesdrops and possibly alters
the communications between two parties who believe that they are directly
communicating with each other over a private connection.

2FA

Certificate
Pinning

Channel

CSPRNG

Diffie-Hellman key
agreement protocol

Direct Messaging (DM)

Ed25519

EV certificate

libsodium

MAC

Man-in-the-Middle

https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Cyberattack

48 | SHAREKEY Swiss AG Security Paper 50

The private key of a private/public key pair derived during the initial account
sign-up process, and used when securely connecting with other users and to
protect the other keys used for data protection and authentication throughout
the Sharekey ecosystem.

The private part of another private/public key pair derived during the initial
account set-up process on a new device, and which is used for creating digital
signatures.

Meteor.js is an open-source framework for building and deploying Web,
Mobile, and Desktop applications in Javascript.

MongoDB is a source-available, cross-platform document-oriented database.

Networking and Cryptography Library (NaCl) (pronounced “salt”) is a public
domain, high-speed software library for network communication, encryption,
decryption, signatures, etc.

A numerical code used on mobile devices to gain access to the Sharekey app.

An alphanumeric piece of text meeting NIST guidelines used to gain access to
the Sharekey app on desktops.

A part of a key pair that is kept secret by the Owner and used to encrypt data
or decrypt data encrypted by another party with the corresponding Public Key.

A pseudorandom number generator (PRNG is an algorithm for generating
a sequence of numbers whose properties resemble those of a sequence of
random numbers.

A part of a key pair that is shared with other parties and used by them to
encrypt data intended for the Owner of the key pair.

The Payment Card Industry Data Security Standard (PCI DSS) is an information
security standard for use by organisations that handle branded credit cards
from the major card schemes.

Poly1305 is a cryptographic Message Authentication Code (MAC) used to verify
the data integrity and the authenticity of a message.

Redis is an open source (BSD licensed), in-memory data structure store, used as
a database, cache, and message broker.

scrypt (pronounced “ess crypt”) is a password-based key derivation function
specifically designed to make it costly to perform large-scale custom hardware
attacks by requiring large amounts of memory.

See Master Secret Key

Master Secret Key

Master Signing Key

Meteor.js

MongoDB

NaCl

Passcode

Password

Private Key

Public Key

PCI DSS

Poly1305

RedisDB

scrypt

Secret Key

PRNG

https://en.wikipedia.org/wiki/Source-available_software
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Public_domain
https://en.wikipedia.org/wiki/Public_domain
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Credit_card
https://en.wikipedia.org/wiki/Card_scheme
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Message

49 | SHAREKEY Swiss AG Security Paper 50

A random set of 24 words generated using the scrypt key derivation function
during initial account sign-up to the Sharekey app. It is used as input to the
derivation of the Master Secret Key and as way to set up a Sharekey app on a
new device.

A key derived where one party’s Master Secret Key and the other party’s Public
Key are combined using the Diffie-Hellman key exchange protocol to encrypt
the communication between them.

Single Sign-On (SSO) is an authentication scheme that allows a user to log in
once with a single set of authentication credentials (e.g., ID and Password) to
any one of several related, yet independent, software systems and not have to
re-enter those credentials at the other systems.

A Sharekey user’s storage space for files and folders on a Sharekey server. All
stored data is encrypted with the user’s Master Secret Key.

SOC 2 (System and Organisation Controls 2) is a type of audit report that
attests to the trustworthiness of services provided by a service organisation.
It is commonly used to assess the risks associated with outsourced software
solutions that store customer data online. SOC 2 compliance is a minimal
requirement when considering a SaaS provider.

Transport Layer Security (TLS) is a set of cryptographic protocols designed to
provide privacy and data integrity over the communication channel between
two computer applications.

WebSocket is a computer communications protocol, providing a full-duplex
communication channel over a single TCP connection.

XSalsa20 is a symmetric encryption key, called a stream cipher, where the same
key is used for both encryption and decryption.

Secret Phrase

Shared Key

Single Sign-On

SAFE

SOC 2

TLS

WebSocket

XSalsa20

https://en.wikipedia.org/wiki/Login
https://en.wikipedia.org/wiki/Cryptographic_protocol

SHAREKEY Swiss AG
Gotthardstrasse 26
6300 Zug
Switzerland
security@sharekey.com

Privacy is the claim of individuals, groups, or
institutions to determine for themselves when,
how, and to what extent information about
them is communicated to others.

Alan Westin, Privacy and Freedom, 1967

mailto:security@sharekey.com
https://www.osano.com/articles/alan-westin

	below
	below
	Contents
	Executive Summary
	Key Differentiators
	Overview
	Security Design
	Identity
	Verification
	History
	Metadata

	Security Culture
	Our People
	Our Planet

	Key Management
	Principal Keys Overview
	Secret Phrase Generation
	(24 Secret Words)
	Key Generation
	Master Secret Key

	Key Derivation
	Session Authorisation Token

	User Account & Device Management
	Account Creation (Sign Up)
	User Verification

	Secret Phrase Generation
	Device Setup (Sign In)
	Authentication (Unlock App)

	Connecting Users
	Discover
	Key Sharing
	Channel Members

	Messaging
	Direct Messaging
	Channel Messaging

	Storage
	Data Sharing
	Folder Sharing
	File Sharing

	Rights Management
	Local File Storage

	Data Encryption
	Crypto Layer in App
	Data Encryption & Integrity
	Ed25519
	Poly1305
	XSalsa20

	Crypto Layer
	Signed Encrypted Data

	Transport Layer Security

	Notifications
	Infrastructure
	Data Hosting Infrastructure
	Kubernetes Cluster
	Load Balancer
	Persistent Cluster

	User Data Processing

	Testing & Certification
	Code Audits
	Penetration Tests
	Bounty Programs
	Certifications

	Source Code
	Website
	Roadmap
	Expanded Functionality
	Metadata
	Increased Security
	Sharing Control
	Infrastructure & Data Storage

	Conclusion
	References
	Acronyms
	Glossary

